MADMX: A Novel Strategy for Maximal Dense Motif Extraction
نویسندگان
چکیده
We develop, analyze and experiment with a new tool, called madmx, which extracts frequent motifs, possibly including don’t care characters, from biological sequences. We introduce density, a simple and flexible measure for bounding the number of don’t cares in a motif, defined as the ratio of solid (i.e., different from don’t care) characters to the total length of the motif. By extracting only maximal dense motifs, madmx reduces the output size and improves performance, while enhancing the quality of the discoveries. The efficiency of our approach relies on a newly defined combining operation, dubbed fusion, which allows for the construction of maximal dense motifs in a bottom-up fashion, while avoiding the generation of nonmaximal ones. We provide experimental evidence of the efficiency and the quality of the motifs returned by madmx.
منابع مشابه
MADMX: A Strategy for Maximal Dense Motif Extraction
We develop, analyze, and experiment with a new tool, called MADMX, which extracts frequent motifs from biological sequences. We introduce the notion of density to single out the "significant" motifs. The density is a simple and flexible measure for bounding the number of don't cares in a motif, defined as the fraction of solid (i.e., different from don't care) characters in the motif. A maximal...
متن کاملIncremental Paradigms of Motif Discovery
We examine the problem of extracting maximal irredundant motifs from a string. A combinatorial argument poses a linear bound on the total number of such motifs, thereby opening the way to the quest for the fastest and most efficient methods of extraction. The basic paradigm explored here is that of iterated updates of the set of irredundant motifs in a string under consecutive unit symbol exten...
متن کاملGapped consensus motif discovery: evaluation of a new algorithm based on local multiple alignments and a sampling strategy
We check the efficiency and faisability of a novel method designed for the discovery of a priori unknown motifs described as gaps alternating with specific regions. Such motifs are searched for as consensi of non homologous biological sequences. The only specifications required concern the maximal gap length, the minimal frequency for specific characters and the minimal percentage (quorum) of s...
متن کاملNovel metrics for feature extraction stability in protein sequence classication
Feature extraction is an unavoidable task, especially in the critical step of preprocessing biological sequences. This step consists for example in transforming the biological sequences into vectors of motifs where each motif is a subsequence that can be seen as a property (or attribute) characterizing the sequence. Hence, we obtain an objectproperty table where objects are sequences and proper...
متن کاملk-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
Many studies are aimed at identifying dense clusters/subgraphs from protein-protein interaction (PPI) networks for protein function prediction. However, the prediction performance based on the dense clusters is actually worse than a simple guilt-by-association method using neighbor counting ideas. This indicates that the local topological structures and properties of PPI networks are still open...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009